Graphene functionalized with TiO₂ for Nanocomposites.

Viviana Jehová González¹, Alfonso Álvarez¹, Néstor Perea-López², Olga Martin¹, Juan Baselga¹, Mauricio Terrones^{1, 2, 3}

Universidad Carlos III de Madrid, Avda. De la Universidad, 30. Leganes (Madrid), Spain. Department of Physics and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA.

Research Center for Exotic Nanocarbons (JST), Shinshu University, Wakasato 4-17-1, Nagano 380-853, Japan.

Department of Chemistry, Department of Materials Science and Engineering and Materials, Research Institute, The Pennsylvania State University, University Park, PA 16802, USA

jbaselga@ing.uc3m.es

Abstract

Graphene has attracted great interest since their discovery in 2004 by Geim and Novoselov^[1], its excellent mechanical (Young's modulus ~1TPa and strength 130GPa^[2]), electrical (quantum hall effects^[3] mobility of suspended graphene 230,000cm² Vs^[4]), thermal conductivity (between 3080-5150Wm⁻¹K^{-1[5,6]}) and optical properties^[7]makes it promising for variety of applications in the areas such as solar-cells,^[8] energy storage,^[9] sensors^[10] and nanocomposites.^[11]TiO₂ nanoparticles have a extraordinary photocatalytic properties^[12] and thermoplastic polymer was a good stable holder to engineering application.

Here, we present a method to prepare sensor nanocomposites based on graphene oxide, GO, sheets functionalized with TiO₂, $GOTiO_2$. $GOTiO_2$ sheets were characterized by high resolution transmission electron microscopy, *HRTEM* (figure 1), thermogravimetry analysis, *TGA* and *Raman* techniques.

Nanocomposites were prepared mixing (three-roll milling^[13]) the nanoparticles with two thermoplastic polymers: polystyrene, **PS**, and polyvinylene fluoride, **PVDF**. The sensors were characterized by scanning electron microscopy, **SEM**, dynamic mechanical thermal analysis, **DMTA**, to evaluate the mechanical properties, differential scanning calorimetry, **DSC**, X ray diffraction, **XRD**, electrical conductivity and field emission measurements. Their response as laser photosensors (figure 2) was evaluated at two wavelengths, red and green (5mW) using a Keithley source-meter as shown in figure 3.

References

- Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, **306** (2004) 666–9.
- [2] Lee C, Wei XD, Kysar JM, Hone J, Science, 321 (2008) 385-8.
- [3] Novoselov K, Jiang Z, Zhang Y, Morozov S, Stormer H, Zeitler U, Maan J, Boebinger G, Kim P, Geim A, Science, 315 (2007) 1379.
- [4] Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL, Solid State Communications, 146 (2008) 351-355.
- [5] Teweldebrhan D, Balandin AA, Appl Phys Lett, 94 (2009) 013101.
- [6] Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN, Appl Phys Lett, 92 (2008) 151911.
- [7] Nair R, Blake P, Grigorenko A, Novoselov K, Booth T, Stauber T, Peres N, Geim A, Science, 320 (2008) 1308.
- [8] Wang X, Zhi L, Mullen K, Nano. Lett. 8 (2008) 3498.
- [9] Stoller MD, Park S, Zhu Y, An J, Ruoff RS, Nano. Lett. 8 (2008) 323.
- [10] Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katnelson MI, Novoselov KS, Nat. Mater. 6 (2007) 652.
- [11]Ganguli S, Roy AK, Anderson DP, Carbon 46 (2008) 806–17.
- [12]Fujishima A, Honda K, Nature 238 (1972) 37-8.
- [13] Thostenson ET, Chou TW, Carbon 44 (2006) 3022-3029.

Figure 1. HRTEM image of a)GO and b) GO with TiO₂ nanoparticles on its surface.

Figure 3. Photosensor response for all the nanocomposites when a Laser Red and Green is positioned on the sample the cycle correspond to turn off and on, respectively.